专 论

扫描探针显微镜

白春礼 商广义

中国科学院化学研究所

【摘要】本文对近几年发展起来的扫描探针显微镜及其应用作了简要介绍。

[Abstract] This Paper describes Scanning Probe Microscope (SPM) developed in recent years and its applications.

1 引言

80年代初期,在IBM 公司苏黎世 实验室诞生了一种全新的表面分析仪 器--扫描隧道显微镜(Scanning Tunneling Microscope,STM)^[1]。在短短几 年里,以它独特的性能激起了世界各国 科学家的极大兴趣和热情。因此与表面 科学,材料科学及生命科学等研究领域 中获得广泛应用^[2]相同步,STM 仪器 本身及其相关仪器也获得了蓬勃发展。 相继诞生了一系列在工作模式、组成结 构及主要性能与 STM 相似的显微仪 器,用来获取用 STM 无法获取的有关 表面结构的各种信息。这个目前被称为 "扫描探针显微镜(Scanning Probe Microscope,SPM)"的显微仪器家族还在 不断发展,成为人类认识微观世界的有 力工具。

2 与隧道效应有关的显微镜

2.1 扫描隧道显微镜

扫描隧道显微镜(STM)的工作原 理是基于量子的隧道效应。如图1所 示,压电陶瓷扫描控制器、电子反馈回 路以及图象显示器是STM的基本组成 部分。由于已有许多文章对STM 做过 详细介绍,故此本文从略。

2.2 扫描噪声显微镜

扫描噪声显微镜(Scanning Noise Microscope, SNM)是 STM 的改进,除 了在隧道结上没有偏压外几乎和 STM

现代科学仪器 1994 4

图1 扫描隧道显微镜原理图

没有什么差别^[3]。SNM 通过在很宽的 带宽上检测来自隧道结上的均方噪声 电压,并利用反馈回路控制探针和样品 间隙,进而使均方噪声电压恒定。由于 均方噪声电压和隧道间隙电阻成比例 关系,因此控制均方噪声电压恒定也就 控制了间隙电阻恒定。 SNM 不仅可用 于观测表面形貌,而且实际上提供了一 种控制隧道间 隙的新方法。这种方法在 进行隧道结的其它测量,如热电子电压 测量时是有益的。目前,SNM 存在的问 题是控制回路的信噪比取决于测量噪 声电压所用的频带宽和控制回路的频 带宽之比。由于测量噪声电压所用的最 大频带宽为100KHz,因此SNM 的信噪 比劣于 STM。但是对于一些特殊用途, 如在电化学中需要零平均电流,SNM 则具有其优势。

2.3 扫描隧道电位仪

扫描隧道电位仪(Scanning Tunneling Potentiometry, STP)与STM的 不同之处在于样品表面又加了一个电极(一共有两个电极)。在样品与探针之间加一交流电压,反馈系统利用由这一 交流电压产生的交流隧道电流来控制 隧道间隙的恒定。当探针在样品表面扫 描时,用另一控制回路通过用探针上的 电压连续跟踪样品上的电压使隧道电 流中的直流分量为零。因此探针上的电 压等于样品表面上每一点的电压。STP 可用来测量纳米尺度的电位变化,如肖 特基势垒,pn 结等,其电压分辨率为几 个毫伏。

2.4 弹道电子发射显微镜

金属/半导体的界面特性,如电子 穿透性是半导体物理中的一个重要问 题。传统的界面探测方法具有很低的空 间分辨率,只能得到关于界面特性的平 均信息。弹道电子发射显微镜(Ballistic Electron Emission Microscope, BEEM) 是在 STM 的基础上发展起来的,它能 直接对界面进行实时地无损伤探测并 具有纳米级分辨率^[4]。

图 2 是 BEEM 的工作原理图。 BEEM 所用的样品是金属/半导体构成 的肖特基势垒异质结。在位于金属膜表 面的探针和膜之间施加一定电压时,通 过隧道效应,探针发射出隧道电子并进 入金属膜中。这些低能电子在金属中的 衰减长度约为10nm。如果膜厚在10nm 左右时,有些电子将达到界面处而没有 能量损失。当探针与膜之间偏压大于界 面势垒 Vb时,这些电子有足够的能量 穿过势垒进入收集极形成电流 Ic。相反 如果偏压小于 Vb 电子不能穿过势垒而 收集极没有电流。通过连续改变偏压测

3

量电流 lc 值,就能得到 lc-V 讲。lc-V 诸直接表征了界面上局域肖特基势垒 高度,界面的缺陷结构等,如果探针在 金属表面以恒流模式扫描时采集 STM 信号和 lc 信号,可同时得到表面形貌象 和界面图象,

图 2 BEEM 的原理图

BEEM 是目前唯一能够在纳米尺 度上无摄探测表面和界面结构的先进 分析仪器。由于其收集极电流 le 通常小 于 100PA,因此与 STM 相比发展 BEEM 更具有挑战性。国际上目前只有 JPL 和 AT&T 等著名实验室拥有自行 研制的仪器。在国内中国科学院化学研 究所科技人员跟踪国际先进技术,已研 制成功 BEEM 并对 Au/Si 及 Au/GaAs 系统进行了观测研究取得了初步成果。

3 扫描力显微镜

3.1 原子力显微镜

基于量子的隧道效应,STM 及以 上介绍的仪器工作时要监测探针和样 品之间隧道电流,因此只限于直接观测 导体或半导体的表面结构。对于非导电 材料须在其表面覆盖一层导电膜。导电 膜的存在往往掩盖了表面结构的细节, 而使 STM 失去了能在原子尺度上研究 表面结构这一优势。即使对于导电样 品,STM 观测到的是对应于表面费米 能级处的态密度。当表面存在非单一电 子态时,STM 得到的是表面形貌和表 面电子性质的综合结果。为了弥补 STM 的不足,1986 年 Binnig 等人发明 了原子力显微镜(Atomic Force Microscope,AFM)^[5]。

第一台 AFM 的工作原理如图 3 所 示,它是通过用隧道电流检测力敏元件 的位移来实现力敏元件探针尖端原子 与表面原子之间的排斥力(10 *~10 * 牛顿)的监测,进而得到表面形貌象。由 于不需要在探针与样品间形成电回路。 突破了样品导电性的限制,因而有更加 广泛的应用领域。

Binnig 等人研制的第一台 AFM 当时只有 3nm 的横向分辨率。1987 年斯 坦福大学 Quate 等人报导了他们的

图 3 AFM 的工作原理图

AFM 达到了原子级分辨率。1988 年底 中科院化学研制成功国内首台具有原 子分辨率的 AFM。在此基础上,又研制 成激光检测 AFM^[6],与此同时,还对金 红石,有机磁体,生物样品等进行了观 测研究。图 4 是中科院化学所研制的原 子力显微镜外形照片。

3.2 其它扫描力显微镜

AFM 探针与样品表面相互作用力

图 4 中国科学院化学研究所 研制的 AFM 外形服片

主要是短程的原子间斥力。如果将探针 离开表面 10~100nm 时,将存在磁力、 静电力和范德瓦尔斯力等长程作用力。 利用 AFM 工作原理,采用监控被测表 面性质对受迫振动的力敏元件所产生 影响的方法,这些力的测量都是可行 的。因此在 AFM 基础上,根据所测力的 不同,相继发展起来了磁力显微镜 (Magnetic Force Microscope, MFM), 静电力显微镜(Electrostatic Force Microscope, EFM), 微光力显微镜(Laser Force Microscope, LFM)等。它们可统 称为扫描力显微镜(Scanning Force Microscope, SFM), SFM 主要由以下几部 分组成:(1)带探针的力敏元件:(2)力 敏元件位移检测装置:(3)电子反馈问 路;(4)压电陶瓷扫描控制器:(5)图象 显示系统。由此可见除了力敏元件上探 针的性质不同外,其余部分与 AFM 基 本一致。限于篇幅,本文难以对其原理、 结构及应用作详细介绍,可详见"扫描 力显微镜"一文^[7]。

4 扫描离子电导显微镜

扫描 离子 电导显微镜 (Scanning lon - Conductance Microscope, SICM) 的原理如图 5 所示,将一个充满电解液 的微型管作为扫描探针,非导电样品放 在一个电解液存储池底部。将滴管探针 调节到样品表面附近,监测滴管内电极 和在电解池中另一电极之间电导变化。 由于当滴管接近表面时,允许离子流过 的空间减小,离子电导也随之减小。在 滴管探针扫描时,遥过反馈电路使探针 上下移动以保持电导守恒,则可获得样 品表面的形貌。由于 SICM 在电解液中 工作,很适用于进行生物学和电生理学 的研究,其分辨率在亚微米量级。

图 5 扫描离子电导显微镜原理图示

5 扫描热显微镜

扫描热显微镜(Scanning Thermal Microscope)所用的探针是一根表面覆 盖有镍层的钨丝。镍层与钨丝之间有一 绝缘层。只是在探针尖端两种金属才结 合在一起,如图6所示。这一钨/镍结点

Modern Scientific Instruments 1994 4

起热电偶的作用,它产生一个与温度成 正比的电压。首先将探针稳定在样品表 面,并向结点通直流电来加热,当探针 散失到空气中的热量等于电流提供的 能量时,尖端的温度就稳定下来,这时 探针比环境温度高几度。当探针接近样 品时,热量向样品流失。由于样品是固 体,其传热性比空气好,探针的热量散 失速率将增加,于是探针尖端开始冷 却,热电偶结上的电压也随之下降。通 过用反馈回路调节探针与样品间隙,从 而控制恒温扫描,可获得表面起伏情 况。用这种方法已经获得了红血细胞的 表面形貌。

图 6 扫描热显微镜原理图示

6 光子扫描隧道显微镜

光子扫描隧道显微镜(Photon Scanning Tunneling Microscope, PSTM)是用光学探针探测样品表面附 近被内全反射所激励的瞬衰场,从而获 得表面结构信息。其分辨率远小于入射 光的半波长。

PSTM 的原理和工作方式在许多 方面和 STM 相似。STM 用电子隧道效 应,而 PSTM 则是用光子隧道效应。如 图 7 所示。当界而两边物质的折射率满 足一定条件时,一束内全反射光会导致 界面的另一侧产生一个瞬衰场。其强度 随离界面的距离成指数关系。将一光学 探针调节到样品表面的瞬衰场内,入射 光的一些光子会穿过界面和光学探针 之间的势垒,即产生光子隧道效应。产 生的光子经过光导纤维传到光电倍增 管并转换成电信号。至此,PSTM 以后 的工作情况和 STM 一样。

用 PSTM 已观测到了波导瞬衰场 的衰减长度和表面形貌,对石英表面、 光学光栅等的观察也取得了一些初步

现代科学仪器 1994 4

结果。

7 结束语

作用。

以上对扫描探针显微镜作了简要介

总之,用 SPM 我们可以获得物质表

绍。本文最后还列出了国内外部分产品,

面物理的、化学的等有关信息。随着时间

的推移 SPM 将会不断得到发展完善,在

探索微观世界的奥秘中发挥越来越大的

包括厂商、型号及性能等。

另一种具有亚波长分辨率的光学 显微镜是扫描近场光学显微镜(Scanning Near - field Optical Microscope, SNOM)。这种显微镜本文不详细介绍, 有兴趣的读者可参阅有关书籍^[8]。

图 7 光子扫描隧道显微镜原理图

参考文献

[1]G. Binnig et al., Appl. Phys. Lett., 1982, 40, No. 2, 178

[2]白春礼,物理,20(3),132(1991)

- [3]R. Moller, A. Esslinger, B. Koslowski; J. Vac. Sci. Technol. A8(1),590(1990)
- [4] 白春礼,真空科学与技术,11(4),211 (1991)
- [5]G. Binnig, C. F. Quate, Ch. Gerber; Phys. Rev. Lett 56,930(1986)

[6]吴浚瀚等,科学通报,38(9),790(1993)

- [7] 王大文, 白春礼, 现代科学仪器, 3, 44 (1992)
- [8] 白 春 礼, 扫 描 隧 道 显 微 技 术 及 其 应 用 P129

国内外扫描探针显微镜部分产品

国别	厂 商	型号	工作环境	性能
美国	Digital Instruments Inc.	Nanoscope I	空气	原子分辨率
		Nanoscope I Nanoscope I	空气	原子分辨率, 计算机控制, 图象处理。
		Nanoscope AFM (原子力显微镜)	空气	原子分辨率, 计算机控制, 图象处理
英国	VG 公司	STM 2000	超高真空	原子分辨率
美国	Park Scientific Instruments Inc.	STM U2	超高真空	原子分辨率
		PSI Probe (原子力显微镜)	空气	原子分辨率
中国	中国科学院 化学研究所,本源仪 器公司	CSTM-9000	空气	原子分辨率, 计算机控制
		CSPM-930 (原子力显微镜)	空气	
德国	Omicron Inc.	UHVSTM	超高真空	原子分辨率
日本	JEOL	JSTM-4000XV	超高真空	原子分辨率
丹麦	Danish Micro–Engineering	Rasterscope 3000	空气	原子分辨率