

气体扩张激光诱导荧光技术测量氢氧自由基·

任信荣 Matthias Otting 邵可声 唐孝炎

(北京大学环境科学中心 环境模拟与污染控制国家重点联合实验室,北京 100871)

摘 要 氢氧自由基(OH)是对流层大气中最重要的氧化剂,对其浓度的测量具有重要意义。本文利用气体扩张 激光诱导荧光技术(FAGE)建立了 OH 测定系统,并对可能存在的干扰进行了讨论。 关键词 氢氧自由基 激光诱导荧光 测量 大气化学

Measurement of Hydroxyl Radical Using Fluorescence Assay with

Gas Expansion Technique

Ren Xinrong Matthias Otting Shao Kesheng Tang Xiaoyan

(Center of Environmental Sciences, The State Key Laboratory of Environmental

Simulation and Pollution Control, Peking University, Beijing, 100871)

Abstract Hydroxyl Radical (OH) is the most important oxidant in the troposphere. In this paper, an OH detection system was established based on the FAGE technique (Fluorescence Assay with Gas Expansion). A Calibration system was described, and the possible interferences were discussed.

Key words Hydroxyl radical Laser-induced fluorescence Measurement Atmospheric Chemistry

1 引 言

利用激光诱导荧光技术 (Laser-induced fluorescence, 简称 LIF) 对实际大气 OH 自由基浓度的测量已有一些研究^[1~3],在用常规 LIF 方法测量 OH 时,最主要的问题是 O₃/H₂O 激光致 OH 干扰^[4],这种干扰水平有时可以达到实际大气 OH 浓度的几倍甚至十几倍,因此其测量结果的准确性受到质疑。气体扩张激光诱导荧光技术 (fluorescence Assay with Gas Expansion,简称 FAGE)^[5]能够有效地减小这种干扰,本文利用这种技术建立了 OH 自由基测定系统,并根据目前最先进的 OH 动态标定技术,用低压汞灯产生 185nm 紫外光光解 H₂O 生成 OH 自由基的原理建立了 OH 标定系统,并讨论了体系可能存在的干扰因素。

2 气体扩张激光诱导荧光技术(FAGE)

常规的激光诱导荧光技术测量 OH 自由基是在大气压 下,用一束调诸到特定波长的激光照射 OH 自由基使之发 生共振跃迁,处于激发态的 OH 发生自发幅射而发出荧光。 由于激光线宽很窄,因此可以把处于低电子态的特定振转 能级的 OH 激发到高电子态上某一特定振转能级,使激发 态 OH 自由基发射出具有特定波长范围的荧光,在保持实 验条件不变的情况下,荧光强度天比于基态 OH 自由基的 浓度,这便是 LIF 测定 OH 浓试制理论依据^[6]。

在较低气压下利用 LIF 技术测量 OH 自由基有不少优点,于是提出了"气体扩张荧光分析"(FAGE)的 LIF 方

法^[7]。OH样品以很高流速经过直径小于 1mm 的喷嘴 (nozzle)被抽入有一定真空度的荧光检测池,荧光池的压力 由连接真空泵的阀门调节,最低可达 5hPa 以下。气体样品 因迅速扩张而降压,此时利用 LIF 技术测量 OH 自由基的 浓度。FAGE 方法测量 OH 的优点有^[8]:(1)低压下激发态 OH 的碰撞淬灭速率减小,增加了荧光量子产率,从而可以 因 OH 浓度降低造成的荧光减弱;(2)低压使干扰物种(O₃ 和 H₂O 等)浓度降低,减小了激光致 OH 干扰;(3)低压使 OH 荧光衰减变慢,延长了激发态 OH 的寿命,有助于时间 分辨技术有效分辨 OH 荧光信号,可以将荧光信号与激光 散射信号有效地分开;(4)拉曼散射、瑞利散射和米散射随 压力降低而减小,宽背景荧光干扰亦随压力降低而减小。

3 FAGE系统的建立和研究

3.1 标准 OH 发生源的建立

当含水气的空气通过光解石英管时, 气态 H₂O 在低压 汞灯的照射下,发生光解产生 OH 自由基

$$H_2O + hv \xrightarrow{185 \text{ nm}} OH + H$$

OH自由基的浓度由(1)式计算得到:

$$[OH] = [H_2O] \cdot \sigma_{H,O} \cdot F_{185} \cdot \Phi_{OH} \cdot \Delta t$$
(1)

 $[H_2O]$ 为气流中 H_2O 的浓度, σ_{H_2O} 为 H_2O 在 185 nm 波长处 的吸收截面(=7.14×10⁻²⁰ cm²), F_{185} 为低压汞灯 185 nm 的辐射通量, Φ_{OH} 为 OH 的最子产率(=1), Δt 为光解时间。

同时气流中的 O₂ 也发生光解产生 O₃:

现代科学仪器 1999 6

^{*} 国家自然科学基金资助项目, No. 29577268

$$O_2 + hv \xrightarrow{185 \text{ nm}} 2O(^3P)$$
$$O(^3P) + O_2 \xrightarrow{M} O_3$$

O3的浓度由(2)式计算得到:

 $[O_3] = [O_2] \cdot \sigma_{O_2} \cdot F_{185} \cdot \Phi_{O_3} \cdot \Delta t$ (2)

 $[O_2]$ 为气流中 O_2 的浓度, σ_{O_2} 为在 185nm 波长处的吸收截面(2.2×10⁻²⁰ cm²), Φ_{O_3} 为 O_3 的量子产率(=2), Δ_t 为光解时间。比较(1)和(2)式可得:

[OH] = [O₃] · [H₂O] · σ_{H₂O}/(2[O₂] · σ_{O₂} (3) 气流中 H₂O 的浓度由饱和水气及稀释比例得到,用 O₃ 仪测 定 O₃ 的浓度即可由(3)式计算得到 OH 的浓度。实验中通 过改变 H₂O 的浓度来得到不同浓度的 OH 自由基气流,具 体装置如图 1 所示。

图 1 FAGE-OH标定系统的气路装置

1. 净化管;2,3. 质量流量控制器;4. 水蒸气发生器 5. 高压 电源;6. 低压汞灯;7. 石英管;8. 喷嘴;9. 真空泵

3.2 OH标定系统的建立

3.2.1 实验装置

本标定系统主要由气路系统和激光系统两部分组成 (图1和2)。合成空气由高纯氮(纯度≥99.999%)和高纯

图 2 FAGE-OH标定系统的光路和数据采集

1. 准分子激光器; 2. 染料激光器; 3. 三根光纤; 4. 球面反 射镜; 5. 能量计; 6. 透镜; 7. 带通滤波器; 8. BOXCAR; 9. 延 迟发生器; 10. 计算机

氧(纯度≥99.995%)按4:1的比例混合而成,经干燥净化 后一小部分气流通过水蒸气发生器产生饱和水气,另一部 分气流作为稀释气,最后总流 20.00 st. L/min 的气流通过 内径为 18 mm 的石英管(室温下流速约为 140 cm/s),石英 管由铝箔包好中间暴露管长约 1.5 cm 接受低压汞灯的照 射,用以光解 H₂O产生 OH 自由基,石英管末端连接荧光测 量池,石英管和荧光池之间有一直径为 0.75 mm 小孔(聚四 氟乙烯)位于石英管末端中心处作为喷嘴,荧光池与真空泵 相连接,使荧光池保持 8×10²Pa 的压力,光解气流经小孔快 速到达荧光池检测区,激光从气流垂直方向激发 OH 自由 基产生荧光,在激光和气流的垂直方向用光电倍增管 (PMT)测量荧光,PMT 前加一带通滤波器(中心波长 309 nm,带宽 5 nm)。荧光信号用快速门积分平均器(BOX-CAR)进行处理,在荧光池的激光出口处用能量计测量激光 脉冲能量,由 BOXCAR 处理作为归一化信号,最后通过 GPIB 数据线将数据输入计算机。

激光系统由准分子(XeCl)激光器和染料激光器组成, 准分子激光器发出 308 nm 的激光来泵浦染料激光器,染料 激光器以香豆素(Coumarin 153)的甲醇溶液作为工作物质, 通过倍频后波长可精确调谐的范围为 261~300 nm,我们选 择 282 nm 左右的激光作为研究。实验中激光器、延迟发生 器和 BOXCAR 的实时同步控制由计算机通过 GPIB 接口和 数据线实施完成。

3.2.2 标定结果

在保持较高的 OH 浓度条件下,通过扫描激光波长 281.85~282.15 nm 得到 OH 自由基的激发光谱(图 3)。从

图中可以明显看到位于 281.915 nm 和 282.067nm 处的两 个荧光峰,这与文献^[8]的结果相同。由于 282.915 nm 的荧 光峰有较大的信号值,我们选此波长作为激发线(on-line), 同时选 281.95 nm 作为背景线(off-line),双波长(on-line 和 off-line)激发的结果如图 4 所示。

在保持其它实验条件不变的情况下,通过改变 H₂O的 浓度来改变 OH 的浓度,测定相 的归一化荧光信号(S)。实 验中共得到 30 个标定数据,用荧光信号 S 对 OH 浓度作图

Modern Scientific Instruments 1999 6

12

×[OH]-0.0407(R^2 =0.987),由相关系数可以看出,荧光 信号S和OH的浓度有较好的相关性,这从一个侧面说明实 验结果较为可靠。同时根据实验中信噪比,我们估计该标 定系统的测量检测限约为 4.7×10⁷OH·cm⁻³。

3.3 OH测定中干扰因素的研究

利用 LIF 技术测定 OH 自由基的干扰因素主要有 O₃/ H₂O 激光致 OH 干扰以及散射光和背景荧光的干扰两种。 前者主要是 O₃ 在波长小于 315 nm 的紫外激光照射下分解 产生 O(¹D),部分 O(¹D)与 H₂O 反应产生 OH,生成的 OH 可以继续吸收一个光子而激发发射荧光,从而生产干扰;而 后者则主要包括拉曼散射、瑞利散射和米散射以及激光激 发其他痕量组分而产生宽带荧光。由于实验中所用均为高 纯气体且经过净化处理,所以合成空气中的杂质浓度极低, 而且荧光池的设计考虑了屏蔽问题(在激光到达检测区前 加了挡光环以减小散射光),激光脉冲的能量较低(约 20μJ/ 脉冲),采用 FAGE 技术则能很好地实现荧光与散射光的分 离,第二种干扰已被降低到较低的水平可以忽略,因此可以 认为实验中主要为 O₃/H₂O 激光致 OH 干扰(标定气流中有 H₂O 且有约 10 ppb 的 O₃ 生成)。

我们尝试了对 O₃/H₂O 激光致 OH 干扰的实验研究:将 合成空气改为高纯氮,这样标定气流中基本上不含 O₃,保持 其他条件不变的情况下测定荧光信号,与相同条件下的合 成空气作比较,结果表明两者的差别不大(<10%);同时将 含有较高浓度 O₃和 H₂O 的空气引入荧光池进行波长扫描, 在 282.915 nm 和 282.067nm 处未发现有荧光峰,因此可以 认为该标定系统中 O₃/H₂O 激光致 OH 干扰是很小的。

4 结 论

利用气体扩张激光诱 导荧光技术(FAGE)建立了 OH 自由基测定系统,并用低压汞灯的 185 nm 紫外光光解 H₂O 产生定量的 OH,建立了 OH 自由基绝对标定系统。在实验 条件下,得到了 OH 自由基的激发光谱,确定了激发波长和 背景波长,并得到归一化荧光信号(S)与 OH 浓度的定量关 系。对可能存在的 O₃/H₂O 激光致 OH 干扰的讨论和研究 表明,用 FAGE 技术测量 OH 过程中产生的干扰比用常规 LIF 方法要小得多,这主要是由 FAGE 的优点所决定的。该 系统将用于大气化学模拟反应体系中 OH 自由基浓度的测 定。

5 参考文献

- Hard T. M., et al., Diurnal cycle of tropospheric OH, Nature, 1986, 322;617~620
- 2 Hofzumahaus A., et al., The measurement of tropospheric OH radicals by laser-induced fluorescence spectroscopy during the POPCORN field campaign, Geophys. Res. Lett., 1996, 23(18):2541~2544
- 3 Mather J. H. , et al. , OH and HO_2 measurements using laser induced fluorescence, J. Geophys. Res. , 1997, 102(D5): $6427 \sim 6436$
- 4 Smith G. P. and D. R. Crosley, A photochemical model of ozone interference effects in laser detection of tropospheric OH, J. Geophys. Res., 1990, 95(D10):16427~16442
- 5 Crosley D. R. , The measurement of OH and HO₂ in the atmosphere, J. Atmos. Sci. , 1995, 52(19); $3299 \sim 3314$
- 6 Hard T. M., et al., Tropospheric free radical determination by FAGE, Environ. Sci. Technol., 1984, 18:68~777
- 7 Heal M. R., et al., On the development and validation of FAGE or local measurement of tropospheric OH and HO₂, J. Atmos. Sci., 1995, 52 (19):3428 ~ 3441
- 8 Chan C. Y., et al., Third-generation FAGE instrument for tropospheric hydroxyl radical measurement, J. Geophys. Res., 1990, 95 (D11): 18569~18576
- (上接第16页)化器用于 ICP AES 的样品溶液气溶胶发生器的原 理结构性能及应用。
- 2 A. Gustavsson. Characterization of a membrane interiaces for sample introduction into atom reservoirs for analytical atomic spectrometry. Spectrochim ACTA 43B, 1988;917
- A. Gustavsson, and Nygre. Chracterization of a nebulizer intorface for flame atomic absorption spectroscopy. Spectrochim ACTA 42B, 1987: 883
- A. Gustavsson. A embrane interface for aqueous sample introduction into inductively coupled plasmas. Spectrochim ACTA 45B No. 10, 1990: 1103
- 5 Renneth Backstrom, A. Gustavsson, Penttihietala. A membrane inter-现代科学仪器 1999 6

face or organicsolvent sample introduction into inductively coupled plasmas. Spectrochim ACTA 45B No. 10, 1990:1103

- 6 J. W. Mclaren, and J. W. Lam, A. Gustavsson. Evaluation of A Membrane interface sample Introduction system for inductively coupled plasmas mass spectrometry. Spectrochim ACTA 45B No. 10, 1990; 1091
- 7 W. W. Vanberkel, J. Balke, and F. J. M. J. Maessen. Introduction of analyte-loadedpdy(dithiocarbamata)into inductively coupled argon plasmas by electrothermalvaporization spatialemission characteristics of thresulting dry plasmas. Spectrochim ACTA 45B No. 11, 1990;1265
- 8 Antoniol Canalsand Vicente Hernaniois. Evolution of drop size distributions for pneumatically generated aerosols in inductively coupled plasmaatomic emission spectrometry. Spectrochim ACTA 45B, 1990;591