官方微信

技术字典

您现在的位置:期刊首页» 仪器百科 »正文

激光扫描共聚焦显微镜

2009-04-04点击:937


 激光扫描共聚焦显微镜是采用激光作为光源,在传统光学显微镜基础上采用共轭聚焦原理和装置,并利用计算机对所观察的对象进行数字图象处理的一套观察、分析和输出系统。主要系统包括激光光源、自动显微镜、扫描模块(包括共聚焦光路通道和针孔、扫描镜、检测器)、数字信号处理器、计算机以及图象输出设备(显示器、彩色打印机)等。通过激光扫描共聚焦显微镜,可以对观察样品进行断层扫描和成像。因此,可以无损伤的观察和分析细胞的三维空间结构。同时,通过激光扫描共聚焦显微镜也是活细胞的动态观察、多重免疫荧光标记和离子荧光标记观察的有力工具。
    激光扫描共聚焦显微镜是近十年发展起来的医学图象分析仪器,现已广泛应用于荧光定量测量、共焦图象分析、三维图象重建、活细胞动力学参数监测和胞间通讯研究等方面。其性能为普遍光学显微镜质的飞跃,是电子显微镜的一个补充。本文以美国Meridian公司的ACAS ULTIMA312为例简要介绍了激光扫描共聚显微镜系统的结构,功能和生物学应用前景。

      激光扫描共聚焦显微镜(Laser scanning Confocal Microscopy ,简称LSCM)是近代生物医学图象仪器的最重要发展之一,它是在荧光显微镜成象的基础上加装激光扫描装置,使用紫外光或可见光激发荧光探针,利用计算机进行图象处理,从而得到细胞或组织内部微细结构的荧光图象,以及在亚细胞水平上观察诸如Ca2+、pH值、膜电位等生理信号及细胞形态的变化。已广泛应用于细胞生物学、生理学、病理学、解剖学、胚胎学、免疫学和神经生物学等领域,对生物样品进行定性、定量、定时和定位研究具有很大的优越性,为这些领域新一代强有力的研究工具。

  创建于1983年的美国Meridian公司,在90年代推出的“激光扫描共聚焦显微镜”这一项具有划时代的义意的高科技产品,曾获得美国“政府新产品奖”和两次“高科技领先技术奖”,它能达到每秒120幅画面的高速扫描激光共聚焦观察,可提供实时,真彩色的激光共聚焦原色图象。我院最近引起的ACAS uLTIMA312是Meridian公司最新的高科技产品,为同类仪器中档次最高、功能最全的精密仪器。现以该仪器为例介绍激光扫描共聚焦显微镜系统及其在细胞生物学中的应用。

激光扫描共聚焦显微镜成像原理及组成

  有关共聚焦显微镜的某些技术原理,早在1957年就已提出,二十年后由Brandengoff在高数值孔径透镜装置上改装成功具有高清晰度的共聚焦显微镜[5],1985年Wijnaendts Van Resandt发表了第一篇有关激光扫描共聚焦显微镜在生物学中应用的文章,到了1987年,才发展成现在通常意义上的第一代激光扫描共聚焦显微镜。

  激光扫描共聚焦显微镜成像原理,激光器发出的激光束经过扩束透镜和光束整形镜,变成一束直径较大的平行光束,长通分色反射镜使光束偏转90度,经过物镜会聚在物镜的焦点上,样品中的荧光物质在激光的激发下发射沿各个方向的荧光,一部分荧光经过物镜、长通分色反射镜、聚焦透镜、会聚在聚焦物镜的焦点处,再通过焦点处的针孔,由检测器接收。

  只有在物镜的焦平面上发出的荧光才够到达检测器,其它位置发出的光均不能过针孔。由于物镜和会聚透镜的焦点在同一光轴上,因而称这种方式成像的显微镜为共聚焦显微镜为共聚显微镜。在成像过程中针孔起着关键作用,针孔直径的大小不仅决定是以共聚焦扫描方式成像还是以普遍学显微镜扫描方式成像,而且对图像的对比度和分辨率有重要的影响。

  激光扫描共聚焦显微镜是近十年发展起来的医学图像分析仪器,与传统的光学显微镜相比,大大地提高了分辨率,能得到真正具有三维清晰度的原色图象。并可探测某些低对比度或弱荧光样品,通过目镜直接观察各种生物样品的弱自发荧光。能动态测量Ca2+ 、pH值,Na1+、Mg2+等影响细胞代谢的各种生理指标[9],对细胞动力学研究有着重要的意义。同时激光扫描共聚显微镜可以处理活的标本,不会对标本造成物理化学特性的破坏,更接近细胞生活状态参数测定。可见激光扫描共聚焦显微镜是普遍显微镜上的质的飞跃,是电子显微镜的一个补充,现已广泛用于荧光定量测量,共焦图像分析,三维图像重建、活细胞动力学参数分析和胞间通讯研究等方面,在整个细胞生物学研究领域有着广阔的应用前景。

全光谱激光共聚焦显微扫描系统

  激光扫描共聚焦显微镜(laser scanning confocal microscope LSCM)是20世纪80年代发展起来的一项具有划时代意义的高科技新产品,是当今世界最先进的细胞生物学分析仪器。激光共聚焦显微镜利用激光作为光源,在传统光学显微镜基础上采用共轭聚焦的原理和装置,以及通过针孔的选择和PMT的收集,并带有一套对其所观察到的对象进行数字图像分析处理的系统软件。与传统光学显微镜相比,它具有更高的分辨率,实现多重荧光的同时观察并可形成清晰的三维图象等优点。所以它问世以来在生物学的研究领域中得到了广泛应用。

  激光共聚焦显微镜是一种高级的荧光显微镜,其在高分子化学材料方面已经有了非常广泛的应用。聚合物多组份体系的研究已发展成为高分子材料科学的重要领域,而其材料性能又与体系中各组份的相容性及相态结构密切相关。目前,研究多组份聚合物共混体系形态结构最常用的方法有电子显微技术,如扫描电镜法 (SEM)和透射电镜法 (TEM)、X-射线光电子能谱法 (XPS)、原子力显微镜法(AFM)、直接无辐射能量转移法(DET)等,这些方法中有的可以从分子水平上获得共混体系中各组份相互作用或形态结构的信息,但也各自存在一些局限性,如有的方法对样品的要求较为苛刻,制样比较复杂,而更主要的是它们或为表面分析方法,只能给出表面结构的信息;或者只能获得宏观平均结构图象,如果要了解材料的层次形态结构及其分布,就要破坏样品,XPS虽可以给出表面以下的组成分布,但只能提供约100A厚度以内的信息。

  激光共聚焦荧光显微技术是一种无损的多层形态观测的新方法,它提供了有效的途径弥补上述各种手段的不足之处。其检测深度可达100μm,制样简单、快速、图象直观。由于它是光学观察方法,因此其分辨率较电镜为低,约0.2μm 。另外,为了得到一定的反差,进行观察前,需对多组份聚合物体系中的某一(或某些)组份进行荧光标记。可得到比普通荧光显微镜更高分辨率、更高灵敏度的图像,并有效地保护标本。不仅在X-Y平面,同时在Z轴方向,可获得样品不同深度层面的信息,即光学切片或断层扫描,而无需破坏样品。另外,获得的图像信息通过相关软件的帮助,可对标本各深度层面的信息进行三维重建,可以得到表面及内部结构都非常清晰的三维图像。因此,在生物学、医学、高分子材料、生物化学、胶体化学(如研究胶体分散相中乳胶颗粒的分布、排列、热运动及器壁效应等)等众多研究领域,激光共聚焦技术都有着广泛的应用。


关注本网官方微信 随时阅权威资讯




相关会议