基因芯片在临床疾病诊断的应用
基因芯片(Gene chip)又称DNA芯片(DNA CHIP)、DNA阵列(DNA arrays)、寡核苷酸微芯片(oligonucleotide micro-chip),是指将许多特定的寡核苷酸片段或基因片段作为探针,有规律地排列固定于支持物上,然后与待测的标记样品的基因按碱基配对原理进行杂交,再通过激光共聚焦荧光检测系统等对芯片进行扫描,并配以计算机系统对每一探针上的荧光信号作出比较和检测,从而迅速得出所要的信息。90年代初,由美国Affymetrix公司的Fodor博士提出并开始基因芯片技术的研究,至今,基因芯片技术在医学各个领域中的应用均已取得巨大突破。1998年底,美国科学促进会将基因芯片列为1998年度自然科学领域十大进展之一。
1 基在芯片制备技术
基因芯片的实质是高度集成的寡核苷酸阵列,制造基因芯片首先要解决的技术是如何在芯片片基上定位合成高密度的核酸探针。目前,基因芯片的制备技术主要有以下几种:
1.1 原位合成 是指直接在芯片上用四种核苷酸合成所需探针的基因芯片制备技术,主要包括:
1.1.1 原位光刻成 是由美国Affymetrix公司发展的结合了半导体工业的光刻技术和DNA合成技术制造高密度核酸阵列的基因芯片制备技术。它利用光保护基团修饰芯片片基表面碱基单体的活性羟基,通过设计特定的光刻掩膜和不断地更换曝光区域,直接在片基上合成所需高密度寡核苷酸阵列,探针数目在合成循环中呈指数增长,例如一个完整的十核苷酸序列通过32个合成步骤,8个小时即可成65536(216)条探针。
1.1.2 原位喷印合成 芯片原位喷印合成原理与喷墨打印类似,不过芯片喷印头和墨盒有多个,墨盒中装的是四种碱基等液体而不是碳粉;采用的化学原理与传统的DNA固相合成一致,因此不需要特殊制备的化学试剂。
1.1.3 分子印章多次压印合成 根据所需微阵列,设计有凹凸的微印章,然后根据预先设计在制备的各级印章上涂上对应的单核苷酸;按照设计的顺序将不同的微印章逐个依次压印在同一基片上,得到256×256阵列的高密度基因芯片。其主要优势有:采用了平面微细加工技术,可实现大批量生产;通过提高集成度,降低单个芯片的成本;可组装大量的(104-106种)生物分子探针,获取信息量大,效率高,特别适合于基因信息的采集;结合微机械技术(MEMS),可把生物样品的预处理、基因物质的提取、扩增,以及杂交后的信息检测相集成,制备成缩微芯片。
1.2 合成点样 是指将合成好的探针、cDNA或基因组DNA通过特定的高速点样机器人直接点在芯片片基上。合成点样技术在基因芯片尚处于实验研究阶段时是唯一的芯片制造手段,曾一度被原位合成技术的光芒所掩盖。随着原位合成技术缺点的暴露和自动化技术的进步,合成点样技术又重现生机。目前,除Affymetrix等研究和生产基因芯片的少数大人司使用原位合成外,其他中小型公司和实验室研究中仍然普遍采用合成点样法。
1.2.1 微型机械点样法 该技术是由Shalon 和Brown于1995年发展起来的一类芯片制备技术,而后由美国Synteni公司发展出商品仪器。该方法通过毛细作用使用点样针将生化物质转移到固体基底表面(点样针与基底表面接触),每一轮结束后,清洗点样针进行下一轮操作,而且机器人控制系统可使其实现自动化生产。
1.2.2 化学喷射法 此方法先进之处在于采用了坟电和其也推动方式从微型喷嘴向固体表面转移生化成分(cDNA、DNA、抗体、小分子等)。该技术由Incyte Pharmaceuticals和Protogene公司等发展。该方法通过应用与压电接口相连的微型喷嘴将生化物质喷向基底,通过电流控制使样品体积得到精确控制。
1980年Bains等将预先合成的短DNA片段固定在固相支持物上进行的杂交测序基因芯片的最原始模型,所以合成点样是基在芯片制作的最原始的方法。由Affymetrix公司发展起来的光导ODTA合成照相平板印刷术将基因芯片引入了工业化生产的阶段。将样品处理、芯片杂交和信号检测集于一体的“缩微实验室”逐渐成为基在芯片发展的新趋势,此方面主要有以下技术较为成功:电子芯片、三维芯片、流过式芯片、石英谐振芯片。
2 基因芯片在临床疾病诊断中的应用
2.1 核酸序列分析 核酸序列分析是基因芯片发展和应用的基础。基因芯片技术可在一次反应中对一个样品进行大量杂交反应,并可对这些杂交信号进行平行分析,因而被广泛应用于DNA序列分析,特别是杂交测序(sequencing by hybridization,SBH)和邻堆杂交技术(contiguous stacking hybridization, CSH)。
2.1.1 杂交测序技术 采用SBH技术,用含65536个8聚寡核苷酸的微阵列,可测定200bp长DNA序列,采用67108864个13聚寡核苷酸探针的微阵列,可对数千个碱基长的DNA测序。Chen等用含135000个寡核苷酸探针的阵列测定了全长为16.6kb的人线粒体基因组序列,准确率达99%。Hacia等用含有48000个寡核苷酸 的高密度微阵列分析了黑猩猩和人BRCA1基因序列差异,结果发现在外显子11约3.4kb长度范围内的核酸序列同源性在98.2%到83.5%之间,提示了二者在进化上的高度相似性。
2.1.2 邻堆杂交技术 SBH技术的效率随着微阵列中寡核苷酸数量与长度的增加而提高,但微阵列中寡核苷酸数量与长度的增加则提高了微阵的复杂性,降低了杂交准确性。CSH技术弥补了SBH技术存在的弊端,CSH技术的应用增加了微阵列中寡核苷酸的有效长度,加强了序列准确性,可进行校长的DNA测序。
2.1.3 毛细管电泳芯片测序技术 Mathies等成功地应用通过光刻加工出的毛细管电泳测定芯片在10min内完成了含433碱基对的DNA序列测定。美国的CuraGen公司和普林斯顿大学也正在从事这类芯片的研究开发工作。
2.2 基因表达分析 随着人类基因组计划的顺利进行,基因组研究的重心转到了功能基因组学,基因表达芯片为此提供了最好的技术平台,用基因芯片进行的表达水平检测可自动、快速地成千上万个基因的表达情况。对大多数基因而言,mRNA表达水平与其蛋白质的表达水平相对应,基因芯片技术可直接测到mRNAr 的种类及丰度,可快速地以1:300000水平出现的mRNA。表达谱基因芯片研究基因表达与传统的NorthernBlot相比有许多优点:系统微型化,样品需量极小;同时研究上万个基因的表达,研究效率明显提高;能更多地揭示基因之间表达变化的相互关系,从而研究基因与基因之间内在的作用关系;检测基因表达变化的灵敏度高,可检测丰度相差几个数量级的表达情况;节约费用和时间。
2.3 寻找新基因 定量检测大量基因表达水平在阐述基因功能、探索疾病原因及机理、发现可能的诊断及治疗等方面是很有价值的。基因芯片技术在发现新基因及分析各个基因在不同时空表达方面是一项十分有用的技术,它具有样品用量 极少,自动化程度高等优点,便于大量筛选新基因。目前,大量人类ESTs给cDNA微阵列提供了丰富的资源,数据库中400000个ESTs代表了所有人类基因,成千上万的ESTs微阵列将为人类基因表达研究提供强有力的分析工具。这将大大地加速人类基因组的功能分析。
2.4 突变体和多态性检测 检测基因突变对于阐明肿瘤与遗传病的分子机制、疾病的早期诊断具有重要意义。以往研究突变和多态性时多采用PCR-SSCP、手工或自动测序、异源双链分析、蛋白截短检测等方法,所有这些都需经过电泳环节,不能满足大规模、低消耗和自动化的要求。应用基因芯片方法检测时可克服上述不足,且与DNA聚合酶或连接酶结合检测时可获得更高的分辨率。Hacia等用含96000个寡核苷酸探针的基因芯片来检测遗传性乳腺癌基因儿卵巢癌基因BRCA1第11外显子3.45kb长度内的所有可能的发合性突变,包括碱基替换及小的插入、缺失乖,并借此确定发病风险,检测准确率高达99%。基因芯片也可用于肺癌、卵巢癌、前列腺癌、结肠癌等多种肿瘤的研究中,为肿瘤基因组解析计划(CGAP)的完成提供重要的技术支持。Lipshutz等证明基因芯片可用来筛选HIV病毒的蛋白酶基因和反转录酶基因的突变。这些突变能引起对抗生素,如AZT等的抗性。Affymetrix公司已制造出商用HIV芯片,包括1040个蛋白酶和反转录酶基因,用来研究病毒抗性发展过程中的碱基突变。Chee等制造了含有135000个25-mer探针的基因芯片来探测16.6kb的人线粒体基因组,共分析了10个样本,检出505个多态。每个样本可在12min内阅读完毕,正确率达99%。在多态性分析方面,基因芯片技术用于基因组研究可创造第三代遗传图,即将遗传病表型与DNA上特定的基因序列联系起来,以单核苷酸多态性(Single Nucleotidee Polymorphisms,SNPs)为标记可帮助区分两个个体遗传物质的差异,若能将所有SNPs全部信息装入生物芯片则可检测到与之相关的基因间差异。
2.5 后基因组研究 基因组测序完成后,未知基因的功能研究是一个十分诱人的后基因组研究课题。斯坦福大学的Davis研究小组的研究提示DNA芯片技术将来可能应用于人类基因组测序完成后阐明开放读码框架ORF生物学功能的研究,可能会对深刻认识生命现象及药物设计带来重大影响。Davis研究小组利用DNA芯片技术对酵母缺失突变株进行定量分析以确定酵母全序列测定完成后新发现的ORF的生物学功能。他们应用基因打靶技术产生多个ORF缺失的酵母突变株,并在缺失ORF旁引入20个核苷酸的标志序列作为缺失ORF的身份标志,谓之“分子条形码”(molecular barcodes),分子条形码可与基因芯片上的探针进行杂交以便于筛选。这样ORF的功能测试可通过一次杂交及用同一生长选择条件完成,大大提高了效率和准确性。
2.6 疾病的诊断 从正常人的基因组中分离出DNA与DNA芯片杂交就可以得出标准图谱。从病人的基因组中分离出DNA与DNA芯片杂交就可以得出病变图谱。这种基因芯片诊断技术以其快速、高效、敏感、经济、平行化、自动化等特点,将成为一项现代化诊断新技术。例如,Affymetrix公司和Oncormed公司合作研制的可监测50%以上肿瘤患者p53基因突变的p53基因芯片将在癌症早期诊断中发挥作用。基因芯片在感染性疾病、遗传性疾病、重症传染病和恶性肿瘤等疾病的临床诊断方面具有独特的优势。与传统检测方法相比,它可以在一张芯片同时对多个病人进行多种疾病的检测,勿需机体处于免疫应答反应期,能及早诊断,待测样品用量小;能特异性检测病原微生物的亚型及变异;可帮助医生及患者从“系统、血管、组织和细胞层次(第二阶段医学)”转变到“DNA、RNA、蛋白质及其相互作用层次(第三阶段医学)”上了解疾病的发生、发展过程。这些特点使得医务人员在短时间内,可以掌握大量发展过程。这些特点使得医务人员在短时间内,可以掌握大量的疾病诊断信息,有助于医生在短沓间内找到正确的治疗措施。
2.6.1 遗传病相关基因的定位 随着人类基因组计划的完成,许多遗传病的相关基因被相继定位,如肥胖病、老年疾呆症、精神病等。基因定位蕴含 着巨大的商业价值。通过制作基因定位型基因芯片,使生物学家可通过遗传病家谱进行研究,从而将某一遗传病和基因和一种或多种多态性联系在一起,从而在染色体上的合适位点定位出遗传病相关基因。近几年,诸如Affymetrix等公司已研制出可检测大量遗传病基因相关点突变及SNP的基因芯片,从而对研代与子代的遗传重组有重要的价值,有望创造更精确的第三代遗传图谱。
2.6.2 感染性疾病的诊断 HIV-1基因中的rt与pro在疾病过程中易发生多种变异,从而导致对多种药物的抗药性,因此,检测和分析其变异性与多态性具有重要临床意义。可以预测,在不久的将来,人们可望在一张基因芯片上检测几乎所有的病原微生物基因。Heller等等采用基因表达谱芯片研究了类风湿关节炎、肠炎基因的特征性表达活性,发现已知炎症相关基因,如肿瘤坏死因子、白介素和粒细胞集落刺激因子在组织中有表达。通过该研究,确定了许多基因与这两种病变的关系,为探讨基因芯片在诊断感染性疾病方面提供了新的民路。现在,肝炎病毒检测诊断芯片、结核杆菌耐药性检测 芯片、多种恶性肿瘤相关病毒基因芯片等一系列诊断芯片逐步开始进入市场。基因诊断是基因芯片中最具有商业价值的应用。
2.7 基因文库图谱绘制 通过确定重复基因的程度,基因芯片已用来以基在组文库进行图谱绘制。基因文库中的每个克隆的所用化学反应均一个反应管,可以快速平行地对多克隆进行图谱绘制,每人每天可对几百个克隆进行基因图谱绘制。
其它应用 基因芯片还广泛地应用于药物筛选、药物作用机制研究、毒理学研究、基因扫描、环境化学毒物的筛选、耐药菌株和药敏检测等多个应用领域。人们相信,在新的世纪中,基因芯片将会在人类疾病的基因诊断中发挥巨大的作用,为整个世界带来巨大的社会效益和经济利益。

关注本网官方微信 随时阅权威资讯