联系人:
“温室自动化 + 高通量成像”技术
机器人技术、图像分析和大规模计算能力的完美结合全自动、高通量对大量植株进行3D成像,从幼苗到成株皆可
特别适合植物功能基因组学和植物表型组学
植物表型和生理研究的强大助手
遗传育种、突变株筛选、表型筛选的强大工具全自动高通量植物3D成像系统——Scanalyzer 3D是一套可以全自动、高通量对大量植株(从幼苗到成熟植株即可)进行成像的系统,可以选择配置可见光(VIS)成像、近红外(NIR)成像、红外(IR)成像、荧光成像或根系近红外成像中的一种或多种,每个成像模块包括顶部和侧面两个摄像头,结合样品旋转装置,就可以对植株进行3D形态学分析。如果做小植株(15 cm以下),也可选配激光扫描3D成像。每一种成像模块都有单独的成像区域(“暗房”),依次进行成像分析。(下载演示视频)
| |
小型版 | 大型定制版(温室版) |
该系统通过可见光成像可以测量植物的结构、宽度、密度、对称性、叶长、叶宽、叶面积、叶角度、叶颜色、叶病斑、种子颜色、种子颜色面积等参数;通过近红外成像可以分析植物的水分分布状态、水力学研究、胁迫生理学研究等;通过根系近红外成像分析植物根系和土柱中的水分分布情况;通过红外成像可以进行植物干旱胁迫研究、蒸腾研究等;通过荧光成像可以分析植物的生理状态。由于所有植物都通过条形码或射频标记,其整个生活史的的不同阶段所有的表型数据都可定期进行测量。
整套系统包括传送带、成像模块、“暗房”、运输车、浇水和称重装置、控制系统等。其中传送带、运输车和植物在温室中运转,所有的植物可以由软件控制在传送带上进行动态分布,以避免由于温室中的光、温、湿分布不均匀造成的影响;成像模块、“暗房”、浇水和称重装置安装在独立的空调房中,并通过传送带与温室相连。
分析模式有两种:一种是软件控制温室中的植物定期传送到“暗房”进行成像分析;另一种是人工携带生长在其他温室中的植物放到“暗房”前的传送带上,进行成像分析。
软件通过成像分析的结果,根据表型数据可以对植株进行高通量筛选。
通过对成像结果的分析,可以进行表型组学研究。目前我国对于作物的研究主要是利用传统的遗传育种方法以及基因组学的方法进行研究, 然而仅停留在基因组学研究水平上显然是不够的,并不能全面、彻底地阐明作物的生理功能,特别是作物表型与其产量、生理状态之间的相互关系,以及不同的环境条件对作物生长状况、产量、种质质量等的影响。这就需要对作物进行表型组学的研究,通过研究不同的表型性状来确定作物的遗传性状,并且寻找不同环境因子对作物各种指标影响的阈值,从而能够更加科学地阐明作物生长机理,指导作物生产。
|
| |
可以自动传送10盆植物的小型系统 | T-Junction分选 |
| |
自动灌溉装置 | 侧面、侧面旋转90度和顶部成像 |
应用实例
◆ 植物颜色分类
植物的颜色是反映植物健康状态的关键指标之一,而人肉眼对颜色的敏感度较低,存在较大的视觉误差。利用Scanalyzer系统可以在拍摄植物可见光照片的基础上,通过软件对获得的颜色信息进行锐化处理,从而使原本肉眼不易区分的颜色差别,显著的区分开来。
|
可见光成像 | 软件锐化处理后的图像 |
◆ 植物骨架/结构分析植物骨架和架构信息,是非常典型的植物表观信息,是农业信息学的重要研究内容。对于杂交育种而言,Scanalyzer系统有助于快速进行表型筛选,也可用于了解整个生活史以及受到胁迫后的骨架/结构变化。
|
植物骨架分析 | 植物结构分析 |
◆ 植物形态学分析成像后,通过Lemna Tec公司专业的软件工程师团队开发的软件,可以对植物进行详细的三维形态学分析。对于所拍摄的每一张图片,都可获得50多个形态学参数。
| |
对于本图而言,可以获得单个叶的长度、单个叶的面积、平均叶宽、茎长、茎宽、茎体积、弯曲度(Bent index)、叶卷曲指数(Leaf curling index)、叶朝向(Leaf orientation)、单个叶的颜色分类等等指标。 | 本图用于详细的植物朝向、角度分析。 |
通过顶部成像和多个侧面成像,可以获得植物X、Y、Z三个轴的信息,根据各个方向的叶面积、茎长、茎宽、叶长、颜色等来估算植物的生物量。实验证明这种估算的生物量与实际生物量有非常好的线性关系。
| |
X轴为实际鲜重,Y轴为通过成像参数估算的鲜重 | 由于转基因植物有很高的形态变异性, |
◆ 利用近红外(NIR)成像分析植株和土壤的水分利用情况近红外成像可以直观的反映植物不同部位的含水量,通过软件处理加上代表不同含水量的颜色后,可以非常直观的看出不同处理下植株不同部位的含水量变化。如果植物是生长在专用土柱中,还可以对植物根系和土壤的含水量变化进行定量分析。
| |
| | |
土柱和玉米整株的近红外成像(原始图像) | 干旱过程中土柱的含水量变化 | 干旱0 h和8 h时土柱中不同层的含水量分布 |
注:LemnaTec公司设计的土柱筒,是透明聚丙烯塑料材质,内装自然土壤,高50 cm,直径5、8或10 cm,装土1.5 3.0 5.0 kg,底部有排水孔。培养时土柱外部套上不透明PVC管遮荫,放置苔藓和土壤藻类滋生,测量时将遮光管取下即可。
◆ 利用近红外(NIR)成像分析NIR成像分析小麦干燥过程中含水量的变化本例是小麦在高温处理下,植株含水量的时间动力学变化可以通过NIR成像直观的反映处来,并进行定量分析。
| |
◆ 利用红外(IR)成像检测植物温度差异红外成像,也叫热成像,用于检测植株的温度变化。由于植株温度与植物的蒸腾作用和含水量密切相关,因此红外成像常用于干旱胁迫研究、群体蒸腾等领域。
|
通过肉眼很难区分哪株玉米受到干旱胁迫 |
◆ 利用红外成像反映小麦气孔的关闭照光时气孔开放,叶片进行蒸腾作用。关光4 min后就检测到叶片温度的显著上升,说明气孔开始关闭。Scanalyzer 3D系统可以非常灵敏的检测气孔状态。
| |
◆ 静态根密度分析析Scanalyzer 3D系统可以拍摄生长在土柱中的植物根系可见光照片,软件自动分析土柱表层的根系。由于土柱的运输车下自带程序控制的旋转台,就可以通过软件控制自动顺序旋转90度角来完成4个不同侧面的成像,获得更完善的根系信息。
| |
不同植物根系的静态分析 | 同一株植物4个侧面的根系成像 |
◆ 根系动态生长分析析Scanalyzer 3D系统可以全自动、高通量的拍摄植物根系照片,结合电子标签,就可以对特定编号的植物根系数据进行时间动力学分析。从下图中的结果可以看出,从第35-100天,根生长最快,从表层有大量的根往下生长,从第35-60天,浇水过量,导致底部很多根死亡。
|
左图示出了一株植物根系随时间的生长发育过程,右图示出的是不同时间点的根系覆盖面积随深度分层的变化 |
◆ 鉴定非转基因植物喷洒农药后,没有转入抗农药基因的植物,可以通过颜色鉴定出来。
|
◆ 植物个体和群体的形态学应用举例Scanalyzer 3D成像系统可以获得大量的形态学参数,并且针对不同的材料,可以获得有针对性的参数。下面是几个例子:
| 水稻植株成像的部分参数: * 叶片长度(即使交叉也可测量) * 叶片面积 * 叶片颜色 * 植物高度 * 植物宽度 * 叶片密度 * 叶片朝向 |
|
稻穗成像的部分参数: * 稻穗面积 * 稻穗颜色 * 稻穗长度 * 稻穗最大长度 * 稻穗结构 * 稻穗骨架(skeleton) | |
|
群体表型成像的部分参数: | 基于复杂的形态学指标的表型分析: * 结构朝向 * momentum of inertia * 高度 * 宽度 * 圆度(roundness) * 紧密性 |
◆ 植物开花过程的动态监测由于绝大多数植物的花的颜色与茎叶不同,利用Scanalyzer 3D成像系统的高通量、全自动、带电子标签的特性,就可以自动监测植物是否开花、开花时间、花朵数目、花朵发育阶段、花败时间等信息。
| 开花过程监测的部分参数: * 叶面积 * 白化(Chlorosis) * 黑斑(Necrosis) * 衰老(Senecence) * 角果数目 * 角果长度 * Start flowering * End flowering * Stay green * Morphology * 生长速率 |
Scanalyzer 3D系统与PL和HTS系统的比较
Scanalyzer PL | Scanalyzer HTS | Scanalyzer 3D | |
高通量 | 否 | 是 | 是 |
小植株成像 | 是 | 是 | 是 |
96孔板成像 | 是 | 是 | 否 |
大植株成像 | 否 | 否 | 是 |
根系研究 | 否 | 否 | 是 |
可见光成像 | 可以 | 可以 | 可以,3D |
荧光成像 | 可以 | 可以 | 可以,3D |
红外成像 | 可以 | 可以 | 可以,3D |
近红外成像 | 可以 | 可以 | 可以,3D |
根系近红外成像 | 否 | 否 | 可以,3D |
激光扫描3D成像 | 否 | 可以 | 可以,只限高度15 cm以下的小植株 |
联系人:
联系人: