详细描述
Dual-PAM/F: Dual-PAM-100的光纤版,适合野外使用
Schreiber教授因发明PAM系列调制叶绿素荧光仪而获得首届国际光合作用协会(ISPR)创新奖
2006年正式商业化的
双通道PAM-100荧光仪——DUAL-PAM-100,是大名鼎鼎的PAM-101/102/103的升级版,是
全球唯一可同步测量P700(PS I活性)和叶绿素荧光(PS II活性)的仪器,短短两年多时间里在全世界科研界得到广泛应用,发表了数十篇高水平科研论文。
受光电技术限制,DUAL-PAM-100的测量头DUAL-DB(或DUAL-DR)和DUAL-E都是外置的,仪器不方便在野外使用。2009年,Schreiber教授及其团队经过两年的不断研发、改进,终于做到在不损失信号的基础上将所有的激发光源和检测器内置到主机中,推出了
光纤版双通道PAM-100荧光仪——DUAL-PAM/F。
DUAL-PAM/F采用光纤做为激发光、叶绿素荧光和P700信号的传导体,方便
在野外现场测量P700和叶绿素荧光,朝着P700的现场测量迈出了一大步!
主要功能* 野外或室内单独或同步测量叶绿素荧光和P700
* 两个光系统的诱导动力学曲线(包括快相和慢相)
* 两个光系统的快速光曲线和光响应曲线
* 淬灭分析、暗驰豫分析
* 典型的P700曲线测量
* 通过叶绿素荧光和P700的同步测量获知两个光系统的电子传递动力学、电子载体库的大小、围绕PSI 的环式电子传递动力学等
应用领域 相当于两台PAM-101/ 102/ 103的功能,可同时测量光系统II活性(调制叶绿素荧光)和光系统I活性(P700吸收变化)可用于光合作用机理研究、植物生理学、农学、林学、园艺学等领域,特别适合于野外现场测量。
测量参数 PS II参数:Fo, Fm, F, Fm’, Fv/Fm, Y(II)=△F/Fm’, Fo’, qP, qL, qN, NPQ, Y(NPQ), Y(NO)和ETR(II)等
PS I参数:P700, Pm, Pm’, P700red, Y(I), Y(ND), Y(NA)和ETR(I)等
主要技术参数 * P700双波长测量光:LED,830 nm和870 nm
* PSII荧光测量光:LED,460 nm(DUAL-DB)或620 nm(DUAL-DR)
* 红色光化光:LED阵列,635 nm;最大连续光强2000 μmol m-2 s-1
* 蓝色光化光:LED,460 nm;最大连续光强700 μmol m-2 s-1
* 单周转饱和闪光(ST):200000 μmol m-2 s-1,5~50 μs可调
* 多周转饱和闪光(MT):20000 μmol m-2 s-1,1~1000 ms可调
部分利用DUAL-PAM发表的文献 1.Coopman RE, Fuentes-Neira FP, Briceño VF, Cabrera HM, Corcuera LJ, Bravo LA: Light energy partitio
ning in photosystems I and II during development of
Nothofagus nitida growing under different light enviro
nments in the Chilean evergreen temperate rain forest
Trees - Structure and Function2010,
24(2):247-259.
[DUAL-PAM-100] 2.Huang W, Zhang S-B, Cao K-F: The different effects of chilling stress under moderate light intensity on photosystem II compared with photosystem I and subsequent recovery in tropical tree species.
Photosynthesis Research2010,
103(3):175-182.
[DUAL-PAM-100] 3.Ma W, Mi H, Shen Y: Influence of the redox state of Q
A on phycobilisome mobility in the cyanobacterium
Synechocystis sp. strain PCC 6803
Journal of Luminescence2010:in press.
[DUAL-PAM-100] 4.Pribil M, Pesaresi P, Hertle A, Barbato R, Leister D: Role of Plastid Protein Phosphatase TAP38 in LHCII Dephosphorylation and Thylakoid Electron Flow.
PLoS Biol2010,
8(1):e1000288.
[DUAL-PAM-100] 5.Saldaña AO, Hernández C, Coopman RE, Bravo LA, Corcuera LJ: Differences in light usage among three fern species of genus
Blechnum of co
ntrasting ecological breadth in a forest light gradient
Ecological Research2010,
25(2):273-281.
[DUAL-PAM-100] 6.Yin L, Lundin B, Bertrand M, Nurmi M, Solymosi K, Kangasjarvi S, Aro E-M, Schoefs B, Spetea C: Role of Thylakoid ATP/ADP Carrier in Photoinhibition and Photoprotection of Photosystem II in Arabidopsis
Plant Physiology2010:in press.
[DUAL-PAM-100, TEACHING-PAM] 7.程建峰, 陈根云, 沈允钢: 神农架林区不同类型植物的叶片特征与光合性能研究.
生态环境学报2010,
19(1):165-171.
[DUAL-PAM-100, IMAGING-PAM] 8.Bernard DG, Cheng Y, Zhao Y, Balk J: An allelic mutant series of ATM3 reveals its key role in the biogenesis of cytosolic iron-sulfur proteins in
Arabidopsis.
Plant Physiology2009,
151:590-602.
[DUAL-PAM-100] 9.Bernát G, Waschewski N, Rögner M: Towards efficient hydrogen production: the impact of antenna size and external factors on electron transport dynamics in
Synechocystis PCC 6803
Photosynthesis Research2009,
99(3):205-216.
[DUAL-PAM-100] 10.Chen J, Xia X, Yin W: ex
pression profiling and functio
nal characterization of a
DREB2-type gene from
Populus euphratica Biochemical and Biophysical Research Communications 2009,
378(3):483-487.
[DUAL-PAM-100] 11.Chiu Y-F, Lin W-C, Wu C-M, Chen Y-H, Hung C-H, Ke S-C, Chu H-A: Identification and characterization of a cytochrome b559
Synechocystis 6803 mutant spo
ntaneously generated from DCMU-inhibited photoheterotrophical growth co
nditions
Biochimica et Biophysica Acta2009,
1787(10):1179-1188.
[DUAL-PAM-100] 12.Damkjær JT, Kereïche S, Johnson MP, Kovacs L, Kiss AZ, Boekema EJ, Ruban AV, Horton P, Jansson S: The Photosystem II Light-Harvesting Protein Lhcb3 Affects the Macrostructure of Photosystem II and the Rate of State Transition
s in Arabidopsis.
The Plant Cell2009,
21:3245-3256.
[DUAL-PAM-100, PAM-100] 13.Grouneva I, Jakob T, Wilhelm C, Goss R: The regulation of xanthophyll cycle activity and of non-photochemical fluorescence quenching by two alternative electron flows in the diatoms
Phaeodactylum tricornutum and
Cyclotella meneghiniana Biochimica et Biophysica Acta 2009,
1787(7):929-938.
[DUAL-PAM-100] 14.Hölzl G, Witt S, Gaude N, Melzer M, Schöttler MA, Dörmann P: The Role of Diglycosyl Lipids in Photosynthesis and Membrane Lipid Homeostasis in
Arabidopsis.
Plant Physiology2009,
150:1147-1159.
[DUAL-PAM-100, KLAS-100] 15.Johnson MP, Pérez-Bueno ML, Zia A, Horton P, Ruban AV: The Zeaxanthin-Independent and Zeaxanthin-Dependent qE Compo
nents of No
nphotochemical Quenching Involve Common Co
nformational Changes within the Photosystem II Antenna in
Arabidopsis.
Plant Physiology2009,
149:1061-1075.
[DUAL-PAM-100] 16.Johnson MP, Ruban AV: Photoprotective energy dissipation in higher plants involves alteration of the excited state energy of the emitting chlorophyll(s) in the light harvesting antenna II (LHCII).
Journal of Biological Chemistry2009,
284:23592-23601.
[DUAL-PAM-100] 17.Kromkamp JC, Beardall J, Sukenik A, Kopeck J, Masojidek J, van Bergeijk S, Gabai S, Shaham E, Yamshon A: Short-term variations in photosynthetic parameters of
Nannochloropsis cultures grown in two types of outdoor mass cultivation systems.
Aquatic Microbial Ecology2009,
56:309-322.
[DUAL-PAM, Flow-Through WATER-PAM] 18.Lin A-P, Wang G-C, Yang F, Pan G-H: Photosynthetic parameters of sexually different parts of
Porphyra katadai var.
hemiphylla (Bangiales, Rhodophyta) during dehydration and re-hydration
Planta2009,
229(4):803-810.
[DUAL-PAM-100] 19.Lípová L, Krch